Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 929: 172457, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38649046

RESUMEN

Due to its widespread use for the treatment of Type-2 diabetes, metformin is routinely detected in surface waters globally. Laboratory studies have shown that environmentally relevant concentrations of metformin can adversely affect the health of adult fish, with effects observed more frequently in males. However, the potential risk to wild fish populations has yet to be fully elucidated and remains a topic of debate. To explore whether environmentally relevant metformin exposure poses a risk to wild fish populations, the present study exposed wild fathead minnows (Pimephales promelas) to 5 or 50 µg/L metformin via 2 m diameter in-lake mesocosms deployed in a natural boreal lake in Northern Ontario at the International Institute for Sustainable Development - Experimental Lakes Area (IISD-ELA). Environmental monitoring was performed at regular intervals for 8-weeks, with fish length, weight (body, liver and gonad), condition factor, gonadosomatic index, liver-somatic index, body composition (water and biomolecules) and hematocrit levels evaluated at test termination. Metabolic endpoints were also evaluated using liver, brain and muscle tissue, and gonads were evaluated histologically. Results indicate that current environmental exposure scenarios may be sufficient to adversely impact the health of wild fish populations. Adult male fish exposed to metformin had significantly reduced whole body weight and condition factor and several male fish from the high-dose metformin had oocytes in their testes. Metformin-exposed fish had altered moisture and lipid (decrease) content in their tissues. Further, brain (increase) and liver (decrease) glycogen were altered in fish exposed to high-dose metformin. To our knowledge, this study constitutes the first effort to understand metformin's effects on a wild small-bodied fish population under environmentally relevant field exposure conditions.


Asunto(s)
Cyprinidae , Lagos , Metformina , Contaminantes Químicos del Agua , Animales , Contaminantes Químicos del Agua/toxicidad , Cyprinidae/fisiología , Masculino , Monitoreo del Ambiente , Ontario , Femenino , Ecosistema
2.
Environ Toxicol Chem ; 42(8): 1709-1720, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37283207

RESUMEN

Metformin, used to treat Type 2 diabetes, is the active ingredient of one of the most prescribed drugs in the world, with over 120 million yearly prescriptions globally. In wastewater-treatment plants (WWTPs), metformin can undergo microbial transformation to form the product guanylurea, which could have toxicological relevance in the environment. Surface water samples from 2018 to 2020 and sediment samples from 2020 were collected from six mixed-use watersheds in Quebec and Ontario, Canada, and analyzed to determine the metformin and guanylurea concentrations at each site. Metformin and guanylurea were present above their limits of quantification in 51.0% and 50.7% of all water samples and in 64% and 21% of all sediment samples, respectively. In surface water, guanylurea was often present at higher concentrations than metformin, while the inverse was true in sediment, with metformin frequently detected at higher concentrations than guanylurea. In addition, at all sites influenced solely by agriculture, concentrations of metformin and guanylurea were <1 µg/L in surface water, suggesting that agriculture is not a significant source of these compounds in the investigated watersheds. These data suggest that WWTPs and potentially septic system leaks are the most likely sources of the compounds in the environment. Guanylurea was detected at many of these sites above environmental concentrations of concern, where critical processes in fish may be affected. Due to the scarcity of available ecotoxicological data and the prominence of guanylurea across all sample sites, there is a need to perform more toxicological investigations of this transformation product and revisit regulations. The present study will help provide toxicologists with environmentally relevant concentration ranges in Canada. Environ Toxicol Chem 2023;42:1709-1720. © 2023 His Majesty the King in Right of Canada and The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC. Reproduced with the permission of the Minister of Agriculture and Agri-Food Canada.


Asunto(s)
Diabetes Mellitus Tipo 2 , Metformina , Contaminantes Químicos del Agua , Animales , Metformina/química , Hipoglucemiantes/análisis , Quebec , Agua , Ontario , Contaminantes Químicos del Agua/análisis
3.
Environ Sci Technol ; 56(14): 10193-10203, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35748754

RESUMEN

Metformin is routinely detected in aquatic ecosystems because of its widespread use as a treatment for Type 2 diabetes. Laboratory studies have shown that exposure to environmentally relevant concentrations of metformin can alter metabolic pathways and impact the growth of early life stage (ELS) fish; however, it is unknown whether these effects occur in wild populations. Herein, we evaluate whether findings from laboratory studies are representative and describe the relative sensitivities of both populations. Duplicate exposures (0, 5, or 50 µg/L metformin) were conducted using wild- and lab-spawned fathead minnow (Pimephales promelas) embryos. Apart from the water source, exposure conditions remained constant. Wild embryos were exposed to previously dosed lake water to account for changes in bioavailability, while reconstituted freshwater was used for the laboratory study. Developmental metformin exposure differentially impacted the growth and morphology of both cohorts, with energy dyshomeostasis and visual effects indicated. The fitness of wild-spawned larvae was impacted to a greater extent relative to lab-spawned fish. Moreover, baseline data reveal important morphological differences between wild- and lab-spawned ELS fatheads that may diminish representativeness of lab studies. Findings also confirm the bioavailability of metformin in naturally occurring systems and suggest current exposure scenarios may be sufficient to negatively impact developing fish.


Asunto(s)
Cyprinidae , Diabetes Mellitus Tipo 2 , Metformina , Contaminantes Químicos del Agua , Animales , Cyprinidae/metabolismo , Ecosistema , Metformina/metabolismo , Agua/metabolismo , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/toxicidad
4.
Front Endocrinol (Lausanne) ; 12: 664157, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33967964

RESUMEN

Jackfish Bay is an isolated bay on the north shore of Lake Superior, Canada that has received effluent from a large bleached-kraft pulp mill since the 1940s. Studies conducted in the late 1980s found evidence of reductions in sex steroid hormone levels in multiple fish species living in the Bay, and increased growth, condition and relative liver weights, with a reduction in internal fat storage, reduced gonadal sizes, delayed sexual maturation, and altered levels of circulating sex steroid hormones in white sucker (Catostomus commersonii). These early studies provided some of the first pieces of evidence of endocrine disruption in wild animals. Studies on white sucker have continued at Jackfish Bay, monitoring fish health after the installation of secondary waste treatment (1989), changes in the pulp bleaching process (1990s), during facility maintenance shutdowns and during a series of facility closures associated with changing ownership (2000s), and were carried through to 2019 resulting in a 30-year study of fish health impacts, endocrine disruption, chemical exposure, and ecosystem recovery. The objective of the present study was to summarize and understand more than 75 physiological, endocrine, chemical and whole organism endpoints that have been studied providing important context for the complexity of endocrine responses, species differences, and challenges with extrapolation. Differences in body size, liver size, gonad size and condition persist, although changes in liver and gonad indices are much smaller than in the early years. Population modeling of the initial reproductive alterations predicted a 30% reduction in the population size, however with improvements over the last couple of decades those population impacts improved considerably. Reflection on these 30 years of detailed studies, on environmental conditions, physiological, and whole organism endpoints, gives insight into the complexity of endocrine responses to environmental change and mitigation.


Asunto(s)
Cipriniformes/crecimiento & desarrollo , Ecosistema , Disruptores Endocrinos/toxicidad , Gónadas/patología , Residuos Industriales/efectos adversos , Hígado/patología , Contaminantes Químicos del Agua/toxicidad , Animales , Monitoreo del Ambiente , Gónadas/efectos de los fármacos , Hígado/efectos de los fármacos , Ontario
5.
Aquat Toxicol ; 232: 105761, 2021 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-33550114

RESUMEN

Metformin is a widely prescribed pharmaceutical used in the treatment of numerous human health disorders, including Type 2 Diabetes, and as a results of its widespread use, metformin is thought to be the most prevalent pharmaceutical in the aquatic environment by weight. The removal of metformin during the water treatment process is directly related to the formation of its primary degradation product, guanylurea, generally present at higher concentrations in surface waters relative to metformin. Growth effects observed in 28-day early life stage (ELS) Japanese medaka exposed to guanylurea were found to be similar to growth effects in 28-day ELS medaka exposed to metformin; however, effect concentrations were orders of magnitude below those of metformin. The present study uses a multi-omics approach to investigate potential mechanisms by which low-level, 1 ng · L-1 nominal, guanylurea exposure may lead to altered growth in 28-day post hatch medaka via shotgun metabolomics and proteomics and qPCR. Specifically, analyses show 6 altered metabolites, 66 altered proteins and 2 altered genes. Collectively, metabolomics, proteomics, and gene expression data (using qPCR) indicate that developmental exposure to guanylurea exposure alters a number of important pathways related to the overall health of ELS fish, including biomolecule metabolism, cellular energetics, nervous system function/development, cellular communication and structure, and detoxification of reactive oxygen species, among others. To our knowledge, this is the first study to both report the molecular level effects of guanylurea on non-target aquatic organisms, and to relate molecular-level changes to whole organism effects.

6.
Environ Toxicol Chem ; 38(5): 1023-1028, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30835871

RESUMEN

Metformin is currently thought to be the highest drug by weight released into the aquatic environment, as a direct result of its widespread use in the treatment of a number of human health disorders. The removal of metformin from wastewaters is directly related to the formation of guanylurea (metformin's only known persistent degradation product), which is generally present at higher concentrations in surface waters than the parent compound. With metformin use rising steadily, it is important to characterize the effects of guanylurea on nontarget aquatic organisms. We recently demonstrated the effects of developmental exposure to environmentally relevant concentrations of metformin on the growth of early life stage (ELS) medaka as well as effects on the body weight of adult male fish following full-life cycle exposures. In the present study, we describe similar effects of guanylurea exposure on these endpoints and life stages. Guanylurea led to effects on growth in a 28-d ELS assessment that were similar to those of metformin; however, these effects occurred at concentrations in the ng/L range compared with the µg/L range for metformin. A possible sex-dependent association with body weight changes was also observed in adults following a 165-d full-life cycle exposure to guanylurea alone or in a mixture with metformin. To our knowledge, the present is the first study to report the toxicity of guanylurea to nontarget aquatic organisms. Environ Toxicol Chem 2019;00:1-6. © 2019 SETAC.


Asunto(s)
Guanidinas/toxicidad , Estadios del Ciclo de Vida/efectos de los fármacos , Metformina/toxicidad , Oryzias/crecimiento & desarrollo , Urea/análogos & derivados , Animales , Peso Corporal/efectos de los fármacos , Femenino , Guanidinas/química , Masculino , Metformina/química , Oryzias/anatomía & histología , Urea/química , Urea/toxicidad , Contaminantes Químicos del Agua/toxicidad
7.
Aquat Toxicol ; 205: 58-65, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30336378

RESUMEN

Metformin is one of the most prevalent pharmaceuticals in both surface and waste waters, yet little is known about the bioavailability and/or effects of developmental exposure on early life stage (ELS) fish. Here, we demonstrate that embryo-larval stages of medaka are capable of taking up metformin from the aquatic environment, provided exposure occurs prior to chorion hardening (∼6-hpf). Once transferred to clean water, ELS medaka are able to completely depurate metformin in <24-hours. Furthermore, ELS medaka exposed to a range of relevant concentrations of waterborne metformin (from 6 hpf through 28-days post hatch) had significantly reduced growth metrics, altered metabolomes, and changes in the expression of genes associated with cell growth. The range of concentrations investigated were 1.0, 3.2, 10, 32, and 100 µg·L-1. To examine effects of chronic, low level metformin exposure across the full medaka life-cycle, we exposed newly fertilized embryos to 3.2 µg L-1 waterborne metformin for 165-days. The weight and length of adult fish were examined, as were effects on the production of some steroid hormones, specifically a significant increase (control females: 0.161 ± 0.023 pg/mg; metformin treated females: 3.42 ± 0.543) in the production of 11-ketotestosterone was observed in adult female medaka. Collectively, these results suggest that current environmental exposure scenarios may be sufficient to cause effects on developing fish.


Asunto(s)
Embrión no Mamífero/efectos de los fármacos , Exposición a Riesgos Ambientales , Metformina/toxicidad , Oryzias , Animales , Femenino , Proteínas de Peces/genética , Regulación de la Expresión Génica/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...